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Dynamics of an anharmonic oscillator that is harmonically coupled to a many-body system
and the notion of an appropriate heat bath
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We report extensive numerical studies of the dynamics of a classical particle in an anharmonic one-
dimensional potential while it is harmonically coupledttoee different many-particle systems. The studies
address the comparatively simpler dynamical problem when the energy of the anharmonic oscillator is suffi-
ciently low. Thefirst modelis one in which the many-particle system is a chain of harmonic oscillators that
have nearest-neighbor harmonic interactions. The anharmonic oscillator is connected to every harmonic oscil-
lator via harmonic springs. Theecond modek identical to the first except that each oscillator is subjected to
an additional one-body harmonic potential. Ttheéd modelis identical to the second except that the nearest-
neighbor couplings between the individual harmonic oscillators are absent, i.e., the oscillators are decoupled
with respect to one another. In the first model we find that the lowest frequency of the anharmonic oscillator,
while possessing a lower bound, increasesas/NK, whereN is the number of oscillators in the bath alid
is the force constant describing the strength of interaction between the anharmonic oscillator and the interacting
harmonic many-body system. In the second model we find aspects of dynamical correlations as seen in the
canonical ensemble and a dominant frequency that increas@ ias We recover the dynamical correlations
of the anharmonic oscillator as obtained within the framework of a canonical ensggtsen, R. S. Sinko-
vits, and S. Chakravarti, Phys. Rev. Lét¥, 4855(1996)] in the third model for sufficiently many harmonic
oscillators. We comment briefly on an alternate way to correctly model heat baths for numerical studies on the
dynamics of physical systems using canonical ensemf$d€63-651X98)04001-X

PACS numbes): 05.20.Gg, 05.40:j

[. INTRODUCTION [5] and later by Ullersmg6] and Ford, Lewis and O’Connell
[7]. Significant literature exists on this problem. It is well
Since most microscopic physical systems are not isolatedjnderstood that one does recover the canonical ensemble dy-
the notion of a heat bath to which a physical system is somePamics of the harmonic-oscillator system in contact with a
how coupled is a convenient construct that enables one t@eat bath by doing direct analytical calculations in which the
introduce the concept of temperature and make a connectiditailed dynamics of the heat batomposed of individual
with the laws of thermodynamics and apply them to the sysharmonic oscillators that are coupled to the harmonic oscil-

tem of interes{1]. The canonical ensemble was first postu-lator that constitutes the systgritself is incorporated into
the analysis. In addition, the dynamics of a single massive

lated by Gibbs and is realized when a system is “weakly X , ) ) - i
coupled” to a heat batti2] or in the presence of “stray hgrmonlc osqllato_r that is cpnnected via harmonic springs
interactions” between the system and the heat hathAn with harmomc-oscnlatc_)r chains to .the left and to the right
important point to note is that the canonical distribution ishas also been probed in great _deta|l_by sever_al Wo_|[|8§r$t _
independent of the size of the system under study and iP%as been show_n over a significant intermediate time regime
. : . at the relaxation of the heavy mass decays exponentially
therefore V.a“d for even a physical system that con§|sts of And that the asymptotic relaxation is oscillatory algebraic and
single particle[1]. One can hence regard a canonical €N o ce the dynamics is different from that of a purely Brown-
semble description of a physical system as an idealizatiog particle. What is not so clear, however, are the circum-
that recovers correct thermodynamical response of the SY§tances under which an anharmonic oscillator system, in con-
tem. The question that one can subsequently raise is as falact with a large reservoir system that forms the heat bath,
lows. Under what circumstances does a system that is somggequately describes the canonical ensemble dynamics of the
how coupled to a larger physical system actually exhibit theanharmonic oscillatof9]. This is precisely the problem we
system dynamics predicted by a canonical ensemble descrigonsider in this article.
tion? The present work concerns a study of this question for To model a heat bath one would need to explicitly state
a simple, nontrivial physical system, namely, a Duffing os-three characteristics of the bat): the type of bath particles,
cillator [4]. (i) the interactions between the system and the bath(iahd
The dynamics of a single harmonic oscillator in contactthe interactions within the bath itself. The successful model
with a many-particle system of individual harmonic oscilla- would reproduce known results for relaxation of the anhar-
tors, i.e., effectively a heat bath, was probed by van Kampemonic oscillator in a canonical ensemipid.
We choose an anharmonic oscillator in a potential with
quartic anharmonicity as the system for this study. It is one
* Author to whom correspondence should be addressed. of the simplest ergodic systems that one can consider for
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probing the issues of interest to us. It is simple in the sens®ne may observe that the terms on the right-hand side of
that the equation of motion can be solved exa€ll§] and Eqgs. (3)—(5) depend upon the details of the leading anhar-
ergodic in the sense that the dynamical correlations such amonic term in Eq(1). Therefore, Eqs(3)—(5) would change
the velocity autocorrelation function of the anharmonic os-if one is to consider a sextic oscillator instead of a quartic
cillator calculated within the framework of a canonical en- oscillator in Eq.(1). The arguments in the analysis presented
semble show slow relaxation as time goes to infinity, aselow, however, would remain invariant for any leading an-
shown recently in Refl4]. A simple intepretation of relax- harmonicity in Eq.(1) [4].
ation for a single anharmonic oscillator in a canonical en- A normalized microcanonical ensemble velocity relax-
semble is that the oscillator loses the memory of its initialation function is exactly obtained by substitutingt) ob-
conditions as a function of time. tained from Eq.2) into the equation for the velocity relax-

In the sections to follow we will describe the known ca- ation function
nonical ensemble results for the anharmonic oscillator in
thermal contact with a heat bath in terms of the dominant [=
frequency associated with its velocity power spectrum at low |
temperatures. We will then choose three models for the “in- =

)

v(t)o(t'+t)dt’ X a%(2p+1)%cog2p+1)wt
o p=0

©

ternal structure” of the heat bath and describe these models v(t)2dt’ S a2(2p+1)2
in terms of the Hamiltonian of the anharmonic oscillator, the % =0 P
bath, and the coupling between the two. We will give de- (6)

tailed information on the numerical methods used in the

study. For each model of the bath, we will show the resultingt is difficult to carry out a closed-form energy integral with
velocity power spectrum of the anharmonic oscillator whenthe result of Eq(6) to obtain the canonical ensemble veloc-
it is harmonically coupled to the bath degrees of freedomity relaxation function. We therefore focus on the nature of
Finally, we will draw conclusions from the work and estab- its asymptotic behavior and start by expandingn powers
lish the conditions under which a heat bath can be modeledf yE, wherey is a system-dependent constant and is 3/4 for

via a large system with many degrees of freedom. the Hamiltonian in Eq(1). To leading order irE, we obtain
w=1+yE. For the moment let us ignore the terms with
Il. DYNAMICS IN CANONICAL ENSEMBLES p>0 and retain only thg=0 term in the summation of Eq.

o ] ) o (6). As we shall show later, the=0 term contributes to the
The Hamiltonian for the anharmonic oscillator is given by sjowest decay. Successively faster decays are contributed by
_ 2 2 4 the terms with increasing magnitude pf We substitute Eq.
E=p/2m+ (1/2)x"+ (14X, @ (6) with the p=0 term into the expression for the canonical
wherep andx represent the momentum and position coor-€nsemble relaxation function. This gives
dinates, respectively, of the anharmonic oscillator anis f

the mass of the particleve setm=1 for our analysis heje e P cog1+ yE)tdE

We briefly sketch below the asymptotic analysis that shows ~° _ B2 cogt) — yBt sin(t)

that any dynamical correlation function, such as the velocity fme‘ﬁEdE y2t2+ g2 '
autocorrelation function, calculated in a canonical ensemble, 0

decays algebraically in time. (7

The asymptotic analysis was accomplished as follows.
We outline below the key steps in the calculations for thewhich decays as- (B/y)sin()/t for yt>g. It may be noted
Hamiltonian in Eq.(1). The formal solution to the equation that we have assumed that the ratio of the density of states to
of motion is given by[10] the partition function is essentially constant at low enough
energies and hence can be disregarded in the calculation in
Eq. (7) [11]. The result on the right-hand side of EJ) is

0

X(t)chzo ap sin(2p+1)wt, (2 the behavior obtained from the numerical analysis reported
in Ref.[4]. The asymptotic functional form is that §(t),
where the leading terms of the consta@ta, are i.e., the zeroth-order spherical Bessel function. The Fourier
transform of the velocity relaxation function exhibits a sharp
Cap=a, peak atw=1 for the system described by Ed).
3 ) Numerical calculations show that the result in E®d),
Ca=(—a’/32)(1-21a%/32+-),..., 3 although originally derived to describe the asymptotic behav-

ior of the velocity relaxation function in the low-temperature
limit, applies at all temperatures. This can be shown easily
w=(1+3a%/4+3a%128+---)12 (4) by retaining higher-order terms Hin the expression for the
relaxation function at a fixed energy before substituting into
In the above expressions, the varialaleis obtained as a the equation for the canonical relaxation function. Keeping
function of E by substituting the formal solutions for(t) termsp>0 in Eq. (6) leads directly to the appearance of
andv(t) into Eq. (1), yielding powers ofE in the integrals, while retaining higher-order
terms in the expansion fes leads to trigonometric functions
with arguments involving higher powers Bf This results in
contributions to the canonical relaxation function from

and the frequency

3/2
a=(2E)">- o (5
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integrals of the form fE,“Epe‘BE[cos,sirj(ytE)[cos,sir] MODEL 1

X (c,tE?)---dE, where the terms in square brackets indicate ; W

that one or the other trigonometric function is chosen. Re- mmw‘w | I
placing the sin and cos functions containing arguments with w R

powers ofE greater than one with their series expansions

simply result in contributions from a sum of integrals of the MODEL 2

form [t'EMe” PF[ cos,sif(®E)dE, where all of the powers l W

of E have been collected iB™, with | andm related by the % e ?)-MJ)
inequality m=1+1. In the long-time limit, these integrals w ~ 2o
have the behavior that they tend to eiter™ ! or 0, de-

pending on the choice of trigonometric function in the inte- MODEL 3

grand and whethem is even or odd. Sincen—I1=1, all - W
contributions to the velocity relaxation function arising from m_b . 6 (L
retaining higher-order terms ig die off faster than 1/ In wo= = >

view of the formal similarities between this and the double-

well problems, similar results can be derived for the double FIG. 1. Cartoons describing the interactions in the three models.

well [10,11]. It may be noted that the Fourier transform of The filled circle is the particle in the anharmonic well. The open

the velocity power spectrum is sensitive to temperaturé?irdes are the bath particles. The parabola under some bath par-

[4,12)]. ticles indicate thgt tho_se particles are in a harmonic well. The resis-
To summarize this section, we have shown that in canonilors are harmonic springs.

cal ensembles the velocity relaxation functi@r any other

relaxation functions such as the position or acceleration re- B. Model 2

laxation functiong decays as 1/for the quartic anharmonic  The Hamiltonian for the anharmonic oscillator that is har-

oscillator [13]. If one performs a Fourier transform of the monically coupled to the bath described by the harmonic-

relaxation functions, one finds a sharp peak in the velocityscillator chain with each oscillator in a harmonic potential
power spectrum aib=1. This peak is the dominant one at well is given by

low temperatures, as shown in Rpt]. Although it remains

at all temperatures, higher-frequency effects tend to mask its N N

presence at high enough temperatures. H=p22m+ (1/2)x2+ (L4x*+ >, pZl2mi+ 2, (1/2x?
We now proceed to make specific models for the heat =1 =t

bath itself and study the velocity power spectrum of the an- kN _

harmonic oscillator in Eq(1) when it is coupled to the vari- +52 (x—x;+i1)2+ >, ?'(xi—xi+1+l)2. (9)

ous models for the bath. For the sake of simplicity, we shall =1 =1

focus on the low-energy dynamics of the anharmonic oscil-

lator for the various circumstances that we shall considello reiterate, model 2 is exactly model 1 except the bath

N—-1

below. particles of model 2 are in a harmonic potential well. As we
shall see, in spite of the obvious similarities between models
IIl. HEAT BATH MODELS 1 and 2, their dynamics are distinct. T_herefore, the studie_s of
models 1 and 2 prompted us to consider model 3, described
A. Model 1 below.

The Hamiltonian for the anharmonic oscillator that is har-
monically coupled to the bath described by a harmonic- C. Model 3

oscillator chain model is given b
g y The Hamiltonian for the anharmonic oscillator that is har-

N monically coupled to the bath described by the free harmonic
H=p2/2m+ (1/2)x2+ (1/4)x*+ El pZ/2m; oscillators is given by
=

N

N—-1 N
H=p2/2m+ (1/2)x2+ (1/4)x*+ >, pZ/2m,
i=1

£ 3 Sk PSS, (e x D% ()
S 251

N N
In Eq. (8), every particle in the harmonic-oscillator chain is +2> (1/2)Xi2+52 (x=x+il)?, (10)
coupled by springs with spring constalkf and the anhar- =1 =1
monic oscillator is also coupled with each of the oscillators
in the chain with the spring constakt We regard as the Once again, model 3 is exactly model 2 except the bath
equilibrium distance between the particles that reside on thparticles of model 3 are now uncorrelated. In the three mod-
harmonic-oscillator chain. We have probed the dynamics oéls described by Eq$8)—(10) m=m;=1 andx; andp; are
the anharmonic oscillator in this model for various choices ofthe position and momentum of the bath particles, respec-
K; and K. Our calculations show that our conclusions aretively, andN is the total number of oscillators in the bath.
robust against the choices kf we had explored. The details Cartoon descriptions of the interactions in all three models
are discussed in Sec. IV below. are show in Fig. 1.
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IV. NUMERICAL STUDY

It is very difficult to solve for the dynamical behavior of
the anharmonic oscillator in models 1-3 in an analytic fash-
ion. The equations of motion for each of the particles in
models 1-3 were therefore solved numerically using the ve-
locity version of the Verlet algorithmil4]. The anharmonic
oscillator was assigned an initial velocity o 0.001 and an
initial position of x=0. This initial condition sets the anhar-
monic oscillator and the bath particles in motion. The par-
ticles used to construct the baths in models 1 and 2 were all
initially at rest and initially located on the number line ac-
cording tox;=0.0001, where the index ran from=1,... N
whereN was the number of harmonic oscillators used in the
study. Thud =0.0001. TheK;’'s were varied randomly in the
interval [0.01,1.0. We have also studied cases in which
K;=K. Our calculations reveal that varyiri, has no sig-
nificant effect on the frequency spectrum of the anharmonic
oscillator in the interval eXplored above. Therefore, we have FIG. 2. Dominant frequencw of the velocity power spectrum
set all theK;'s equal toK in all the work reported here for for the anharmonic oscillator connected to the bath as described by
models 1 and 2. The insensitivity of the results to the valuesnodel 1. The symbols correspond to the simulations done at various
of K; chosen is possibly due to the fact that the velocities okets of (\,K), whereN is the number of bath particles akdis the
the particles in the harmonic-oscillator chains are rathespring constant for all the springs. The parabolas have the form
small. However, as we shall see, the dynamics of the anhaN(w,K)=—1—1/K+(1/10)K %%+ (1/K)w?.
monic oscillator is sensitive to any one-body potential that
the bath particles are subjected to as well as the details of the V. DYNAMICS IN MODEL SYSTEMS
two-body interactions within the bath. Thus the frequency , yhis section we shall discuss our studies on the velocity

spectrum of _the anharmomc OSF:I"&IO!’ in mode! 2,1n Wh'.ChreIaxation function for the anharmonic oscillator that is har-

the bath particles in the harmonic-oscillator chain are SUbJecr'honically coupled to the various heat batfescribed by

to a one-body potential, is distinct from that in model 1, in models 1—3under study. For model 1, i.e., the bath modeled

which the bath particles in the harmonic-oscillator chain,gjng'the harmonic-oscillator chain, we have studied the 30
have no additional constraints. Likewise, the frequency SPeGjelocity power spectra that can be 6btained from the follow-
trum of the anharmonic oscillator in model 2, which hasing sets of [,K)=(N=1,2,9,49,99,249,499,749,999,9999:

nearest-neighbor interactions of the bath particles, is diﬁerkz0.01,0.1,'1)Recall tr;at' V\,/e Hav;a set' eaK'm eq'ual tE)K '

ent from that obtained using model 3, which has no interac;, 1 odels 1 and 2. We have found no evidence of a peak in

tions between the bath particles. . : .
. ._the velocity power spectrum ai= 1. [Recall the discussion
In the study of model 3, the velocities of the harmonlcfollowing Eq. (6).] This leads us to conclude that the dynam-

oscillators that were used to construct the bath were dlstnbrcs of the bath particles strongly affects the dynamics of the

uted such that the |r_1|t|al Kinetic energy of these 0SC'II""torsanharmonic oscillator to which the bath particles are coupled
were Boltzmann weighted according to expéEy), where

E. is the initial kineti di tartve set via K. We did, however, find peaks in the velocity power
k 1S e Infial KINElic energy an& IS Some cons ariwe se spectrum of the anharmonic oscillator at valueseothat
xk=1). The range of kinetic energies allowed was

LI were greater than 1. These results are summarized in Fig. 2.
10 4-25.32. Thus we had equal spacing in exgEy), but g g

Y Bolt ahtadkineti ) A subsequent analysis of the quadratic fitdNoés a func-
unequal (ie., >oltzmann weig 9 KINEUC-ENErgy Spacing. +on of ), the lowest frequency of the anharmonic oscillator,
The initial positions of the harmonic oscillators in this model

for the three values df characterizing the coupling between
were chosen as per models 1 and 2. g ping

The int i ¢ . d the time lenath of the st dthe anharmonic oscillator and the particles in the harmonic-
;e integration step size and the ime length ot the Stdy,qqiator chain studied resulted in an empirical expression
varied depending on the set bf andK being studied. The

) ; . > for w as a function oN andK, which is given b
largest step size used was Fltime units, while the smallest @ 9 y

was 104 time units. The length of time over which the w=—(1/20)K17069%
velocity relaxation functions of the anharmonic oscillator
were determined averaged to near 50 time units. +(1/20) yK2(10693 1+ 400N K + 400K +400. (11)

We have used the discrete cosine transf¢irs of the ,
velocity relaxation function to determine the velocity power 't My be that one can write E¢L1) as

spectrum of the anharmonic oscillator. In order to eliminate _ 1-In2
. ) . w=— (120K
the negative numbers that arise from incomplete phase can-
cellations in the calculation of the discrete cosine transform, +(1/20)VK21-M2 1 400NK + 400K +400. (12)

we have multiplied the relaxation function with a Gaussian

function of the form expt «t?) before taking the transfor- However, in the absence of an analytical proof, it is worth
mation. All the velocity power spectra shown in this study not speculating that a fitted parameter such as 0.693 is actu-
have used this Gaussian function witt+0.02. ally In 2.
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FIG. 3. Velocity power spectrum for the anharmonic oscillator
connected to the bath as described by modekdlid line) and FIG. 4. Velocity power spectrum for the anharmonic oscillator
mo_de! 2(dashed Imﬁf_or N=1, K=1. The vertical line aw=11is  connected to the bath as described by model 2Nfer999, K=1.
to indicate the canonical ensemble frequency. The inset shows the existence of a peak nearl that cannot be
. seen when plotted with the dominant frequency. The vertical line at
For largeN, this becomes w=1 is to indicate the canonical ensemble frequency.
w*yNK. (13)  of the size of the bath in this problem, namely, that for large

. . ) N, the high-frequency contributions are dictatedNbytself.

Let us recall that the anharmonic oscillator couples with eachyhan the bath particles are coupled with one another, the
harmonic oscillator via springs of spring consténand that o415 frequency of the anharmonic oscillator is dwarfed by
N is the total number of harmonic oscillators that interacty,o frequencies associated with the size of the bath and the
with the anharmonic oscillator. It then becomes apparent thaf iaractions between the bath particles.
one can regard the collective effect of the oscillators on the |t .\ remove the coupling between the harmonic oscilla-
dynamics of the anharmonic oscillator as that of a single oONgys i the chainfi.e., make the bath particles uncorrelated
that oscillates with a harmonic coupling BK. This “effec-  an4 consider a set of free harmonic oscillators as in mogel 3
tive megaoscillator” adds a “harmonic frequency” to the 54 recalculate the velocity power spectrum of the anhar-
velocity power spectrum of the anharmonic oscillator.

The role of the harmonic interactions between the par-
ticles that make up the bath is not evident from the analyses 0.50 Lt 1t 1 1 1

of model 1. As we shall see below, the harmonic coupling =

between the particles tends to suppress the dynamical effects = 0.45 o —

of the anharmonic oscillator. 5 0.40 — |
When we model the bath according to moddis2e Eq. L

(9)], we find that for the state wheiN=1, K=1, we observe UQ)" 0.35 B

two frequencies: the first ab=1 and the second at a fre- + 0.30 - —

guency that is consistent with the value suggested by Eq. g 0.25 [

(11). The velocity power spectra of the anharmonic oscillator 5 )

in this bath(i.e., in model 2 as well as that in model 1 with A, 0.20 —

N=1 andK=1 are shown in Fig. 3. It would seem that the 20015 =

bath described by model 2 does lead to the correct canonical 'S

ensemble frequency. While this is encouraging, we also note ° 0.10 + B

that the bath in model 2 leads to other pe&ks shown in L 0.05 -

Figs. 3 and 4 The peak atw=1 turns out to become in- > 0.00

creasingly less dominant &is increased in model 2. Thus, LU

for N=999, K=1, we find that the peak ab=1 is domi- 0 5 10 15 20 25 30 35 40

nated by a high-frequency peak at a location that is consis- ®

tent with expectations based upon the proportionality given

in Eq. (13). This is shown in Fig. 4. The inset of Fig. 4 shows |G, 5. Velocity power spectrum for the anharmonic oscillator
that there is still a peak ab=1, but it possesses an ampli- connected to the bath as described by model 3\fer999, K=1.
tude that is~ 1/N if we assume that the peak@t=31.6 isof  The vertical line atw=1 is to indicate the canonical ensemble
amplitude unity. The results in Figs. 3 and 4 confirm the rolefrequency.
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monic oscillator, we readily recover the canonical ensembleonstructed out of harmonic oscillators, there are high-
peak atw=1 for theN=999, K=1 system as shown in Fig. frequency “contaminants” to the dynamics of the system of
5. Thus model 3 is clearly a better description of a heat batlnterest. However, in addition to the above-mentioned con-
than models 2 and 1. However, even this model is not pertaminant frequencies, if the bath particles are uncoupled
fect. The peak in the velocity power spectrumwat 31.6 in -~ from one another, the dynamics of the system of interest is
Fig. 5 still persists and has an amplitude almost equal to thatnaffected by the details of the bath. The contaminant fre-
of the peak atw=1. It appears that the lone important peak quencies can be readily characterized in a numerical study.
from model 2 at this state has split into two equally impor-For a sufficiently large bath, these high-frequency correc-
tant peaks when the bath particles are uncoufieodel 3.  tions can be made to lie beyond the highest frequencies al-
As argued above, the peak at=31.6 from model 3 at lowed by the shortest time scales supported by the system.
N=999, K=1 is related to the size of the bath. In the ther- Thus a model similar to model 3 can be a useful approach to
modynamic limit, this peak will move to infinitely high fre- model a heat bath in simulational studies on the dynamics of
quencies and hence will not affect the dynamics of the sysphysical systems in a canonical ensenildlé].
tem being probed. The amplitude of the peak at unity is no
longer suppressed by the high-frequency peak in model 3.
This is attributed to the fact that the bath particles are not
coupled with each other and thus the collective frequencies D.P.V.J. would like to thank the Department of Chemical
associated with the dynamics of the bath particles can n&ngineering at SUNY Buffalo for the computing time nec-
longer affect the dynamics of the system itself. cessary to complete this study. S.S. thanks R. S. Sinkovits, S.
To summarize this section, we have shown that among th€hakravarti, and S. D. Mahanti for their interest in this work.
models we have probed in this study, model 3 is the mosThis work has been supported by the Office of the Provost at
appropriate one for describing a heat bath. For any finite batBUNY Buffalo (S.S) and by the U.S. ArmyS.S).
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