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Dynamics of an anharmonic oscillator that is harmonically coupled to a many-body system
and the notion of an appropriate heat bath
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We report extensive numerical studies of the dynamics of a classical particle in an anharmonic one-
dimensional potential while it is harmonically coupled tothree different many-particle systems. The studies
address the comparatively simpler dynamical problem when the energy of the anharmonic oscillator is suffi-
ciently low. Thefirst modelis one in which the many-particle system is a chain of harmonic oscillators that
have nearest-neighbor harmonic interactions. The anharmonic oscillator is connected to every harmonic oscil-
lator via harmonic springs. Thesecond modelis identical to the first except that each oscillator is subjected to
an additional one-body harmonic potential. Thethird modelis identical to the second except that the nearest-
neighbor couplings between the individual harmonic oscillators are absent, i.e., the oscillators are decoupled
with respect to one another. In the first model we find that the lowest frequency of the anharmonic oscillator,
while possessing a lower bound, increases asv}ANK, whereN is the number of oscillators in the bath andK
is the force constant describing the strength of interaction between the anharmonic oscillator and the interacting
harmonic many-body system. In the second model we find aspects of dynamical correlations as seen in the
canonical ensemble and a dominant frequency that increases asANK. We recover the dynamical correlations
of the anharmonic oscillator as obtained within the framework of a canonical ensemble@S. Sen, R. S. Sinko-
vits, and S. Chakravarti, Phys. Rev. Lett.77, 4855~1996!# in the third model for sufficiently many harmonic
oscillators. We comment briefly on an alternate way to correctly model heat baths for numerical studies on the
dynamics of physical systems using canonical ensembles.@S1063-651X~98!04001-X#

PACS number~s!: 05.20.Gg, 05.40.1j
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I. INTRODUCTION

Since most microscopic physical systems are not isola
the notion of a heat bath to which a physical system is so
how coupled is a convenient construct that enables on
introduce the concept of temperature and make a connec
with the laws of thermodynamics and apply them to the s
tem of interest@1#. The canonical ensemble was first pos
lated by Gibbs and is realized when a system is ‘‘wea
coupled’’ to a heat bath@2# or in the presence of ‘‘stray
interactions’’ between the system and the heat bath@3#. An
important point to note is that the canonical distribution
independent of the size of the system under study an
therefore valid for even a physical system that consists
single particle@1#. One can hence regard a canonical e
semble description of a physical system as an idealiza
that recovers correct thermodynamical response of the
tem. The question that one can subsequently raise is as
lows. Under what circumstances does a system that is so
how coupled to a larger physical system actually exhibit
system dynamics predicted by a canonical ensemble des
tion? The present work concerns a study of this question
a simple, nontrivial physical system, namely, a Duffing o
cillator @4#.

The dynamics of a single harmonic oscillator in conta
with a many-particle system of individual harmonic oscill
tors, i.e., effectively a heat bath, was probed by van Kam

*Author to whom correspondence should be addressed.
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d,
e-
to
on
-

-
y

is
a
-
n
s-
ol-
e-

e
ip-
r

-

t

n

@5# and later by Ullersma@6# and Ford, Lewis and O’Connel
@7#. Significant literature exists on this problem. It is we
understood that one does recover the canonical ensembl
namics of the harmonic-oscillator system in contact with
heat bath by doing direct analytical calculations in which t
detailed dynamics of the heat bath~composed of individual
harmonic oscillators that are coupled to the harmonic os
lator that constitutes the system! itself is incorporated into
the analysis. In addition, the dynamics of a single mass
harmonic oscillator that is connected via harmonic sprin
with harmonic-oscillator chains to the left and to the rig
has also been probed in great detail by several workers@8#. It
has been shown over a significant intermediate time reg
that the relaxation of the heavy mass decays exponent
and that the asymptotic relaxation is oscillatory algebraic a
hence the dynamics is different from that of a purely Brow
ian particle. What is not so clear, however, are the circu
stances under which an anharmonic oscillator system, in c
tact with a large reservoir system that forms the heat b
adequately describes the canonical ensemble dynamics o
anharmonic oscillator@9#. This is precisely the problem we
consider in this article.

To model a heat bath one would need to explicitly st
three characteristics of the bath:~i! the type of bath particles
~ii ! the interactions between the system and the bath, and~iii !
the interactions within the bath itself. The successful mo
would reproduce known results for relaxation of the anh
monic oscillator in a canonical ensemble@4#.

We choose an anharmonic oscillator in a potential w
quartic anharmonicity as the system for this study. It is o
of the simplest ergodic systems that one can consider
224 © 1998 The American Physical Society
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57 225DYNAMICS OF AN ANHARMONIC OSCILLATOR THAT . . .
probing the issues of interest to us. It is simple in the se
that the equation of motion can be solved exactly@10# and
ergodic in the sense that the dynamical correlations suc
the velocity autocorrelation function of the anharmonic o
cillator calculated within the framework of a canonical e
semble show slow relaxation as time goes to infinity,
shown recently in Ref.@4#. A simple intepretation of relax-
ation for a single anharmonic oscillator in a canonical e
semble is that the oscillator loses the memory of its ini
conditions as a function of time.

In the sections to follow we will describe the known c
nonical ensemble results for the anharmonic oscillator
thermal contact with a heat bath in terms of the domin
frequency associated with its velocity power spectrum at
temperatures. We will then choose three models for the ‘
ternal structure’’ of the heat bath and describe these mo
in terms of the Hamiltonian of the anharmonic oscillator, t
bath, and the coupling between the two. We will give d
tailed information on the numerical methods used in
study. For each model of the bath, we will show the result
velocity power spectrum of the anharmonic oscillator wh
it is harmonically coupled to the bath degrees of freedo
Finally, we will draw conclusions from the work and esta
lish the conditions under which a heat bath can be mode
via a large system with many degrees of freedom.

II. DYNAMICS IN CANONICAL ENSEMBLES

The Hamiltonian for the anharmonic oscillator is given

E5p2/2m1~1/2!x21~1/4!x4, ~1!

wherep and x represent the momentum and position co
dinates, respectively, of the anharmonic oscillator andm is
the mass of the particle~we setm51 for our analysis here!.
We briefly sketch below the asymptotic analysis that sho
that any dynamical correlation function, such as the veloc
autocorrelation function, calculated in a canonical ensem
decays algebraically in time.

The asymptotic analysis was accomplished as follo
We outline below the key steps in the calculations for
Hamiltonian in Eq.~1!. The formal solution to the equatio
of motion is given by@10#

x~ t !5C(
p50

`

ap sin~2p11!vt, ~2!

where the leading terms of the constantsCan are

Ca05a,

Ca15~2a3/32!~1221a2/321••• !,..., ~3!

and the frequency

v5~113a2/413a4/1281••• !1/2. ~4!

In the above expressions, the variablea is obtained as a
function of E by substituting the formal solutions forx(t)
andv(t) into Eq. ~1!, yielding

a5~2E!1/22
9E3/2

27/2 ••• . ~5!
e
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One may observe that the terms on the right-hand side
Eqs. ~3!–~5! depend upon the details of the leading anh
monic term in Eq.~1!. Therefore, Eqs.~3!–~5! would change
if one is to consider a sextic oscillator instead of a qua
oscillator in Eq.~1!. The arguments in the analysis present
below, however, would remain invariant for any leading a
harmonicity in Eq.~1! @4#.

A normalized microcanonical ensemble velocity rela
ation function is exactly obtained by substitutingv(t) ob-
tained from Eq.~2! into the equation for the velocity relax
ation function

E
2`

`

v~ t8!v~ t81t !dt8

È2`

v~ t8!2dt8

5

(
p50

`

ap
2~2p11!2cos~2p11!vt

(
p50

`

ap
2~2p11!2

.

~6!

It is difficult to carry out a closed-form energy integral wit
the result of Eq.~6! to obtain the canonical ensemble velo
ity relaxation function. We therefore focus on the nature
its asymptotic behavior and start by expandingv in powers
of gE, whereg is a system-dependent constant and is 3/4
the Hamiltonian in Eq.~1!. To leading order inE, we obtain
v.11gE. For the moment let us ignore the terms wi
p.0 and retain only thep50 term in the summation of Eq
~6!. As we shall show later, thep50 term contributes to the
slowest decay. Successively faster decays are contribute
the terms with increasing magnitude ofp. We substitute Eq.
~6! with the p50 term into the expression for the canonic
ensemble relaxation function. This gives

E
0

`

e2bE cos~11gE!tdE

E
0

`

e2bEdE
5

b2 cos~ t !2gbt sin~ t !

g2t21b2 ,

~7!

which decays as2 (b/g)sin(t)/t for gt@b. It may be noted
that we have assumed that the ratio of the density of state
the partition function is essentially constant at low enou
energies and hence can be disregarded in the calculatio
Eq. ~7! @11#. The result on the right-hand side of Eq.~7! is
the behavior obtained from the numerical analysis repor
in Ref. @4#. The asymptotic functional form is that ofj 0(t),
i.e., the zeroth-order spherical Bessel function. The Fou
transform of the velocity relaxation function exhibits a sha
peak atv51 for the system described by Eq.~1!.

Numerical calculations show that the result in Eq.~7!,
although originally derived to describe the asymptotic beh
ior of the velocity relaxation function in the low-temperatu
limit, applies at all temperatures. This can be shown ea
by retaining higher-order terms inE in the expression for the
relaxation function at a fixed energy before substituting in
the equation for the canonical relaxation function. Keep
terms p.0 in Eq. ~6! leads directly to the appearance
powers ofE in the integrals, while retaining higher-orde
terms in the expansion forv leads to trigonometric functions
with arguments involving higher powers ofE. This results in
contributions to the canonical relaxation function fro
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226 57DONALD P. VISCO, JR. AND SURAJIT SEN
integrals of the form *0
`Epe2bE@cos,sin#(gtE)@cos,sin#

3(c2tE
2)•••dE, where the terms in square brackets indic

that one or the other trigonometric function is chosen. R
placing the sin and cos functions containing arguments w
powers ofE greater than one with their series expansio
simply result in contributions from a sum of integrals of t
form *0

`t lEme2bE@cos,sin#(gtE)dE, where all of the powers
of E have been collected inEm, with l andm related by the
inequality m> l 11. In the long-time limit, these integral
have the behavior that they tend to eithert l 2m21 or 0, de-
pending on the choice of trigonometric function in the in
grand and whetherm is even or odd. Sincem2 l>1, all
contributions to the velocity relaxation function arising fro
retaining higher-order terms inE die off faster than 1/t. In
view of the formal similarities between this and the doub
well problems, similar results can be derived for the dou
well @10,11#. It may be noted that the Fourier transform
the velocity power spectrum is sensitive to temperat
@4,12#.

To summarize this section, we have shown that in cano
cal ensembles the velocity relaxation function~or any other
relaxation functions such as the position or acceleration
laxation functions! decays as 1/t for the quartic anharmonic
oscillator @13#. If one performs a Fourier transform of th
relaxation functions, one finds a sharp peak in the velo
power spectrum atv51. This peak is the dominant one
low temperatures, as shown in Ref.@4#. Although it remains
at all temperatures, higher-frequency effects tend to mas
presence at high enough temperatures.

We now proceed to make specific models for the h
bath itself and study the velocity power spectrum of the
harmonic oscillator in Eq.~1! when it is coupled to the vari
ous models for the bath. For the sake of simplicity, we sh
focus on the low-energy dynamics of the anharmonic os
lator for the various circumstances that we shall consi
below.

III. HEAT BATH MODELS

A. Model 1

The Hamiltonian for the anharmonic oscillator that is h
monically coupled to the bath described by a harmon
oscillator chain model is given by

H5p2/2m1~1/2!x21~1/4!x41(
i 51

N

pi
2/2mi

1 (
i 51

N21
Ki

2
~xi2xi 111 l !21

K

2(
i 51

N

~x2xi1 i l !2. ~8!

In Eq. ~8!, every particle in the harmonic-oscillator chain
coupled by springs with spring constantKi and the anhar-
monic oscillator is also coupled with each of the oscillato
in the chain with the spring constantK. We regardl as the
equilibrium distance between the particles that reside on
harmonic-oscillator chain. We have probed the dynamics
the anharmonic oscillator in this model for various choices
Ki and K. Our calculations show that our conclusions a
robust against the choices ofKi we had explored. The detail
are discussed in Sec. IV below.
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B. Model 2

The Hamiltonian for the anharmonic oscillator that is ha
monically coupled to the bath described by the harmon
oscillator chain with each oscillator in a harmonic potent
well is given by

H5p2/2m1~1/2!x21~1/4!x41(
i 51

N

pi
2/2mi1(

i 51

N

~1/2!xi
2

1
K

2(
i 51

N

~x2xi1 i l !21 (
i 51

N21
Ki

2
~xi2xi 111 l !2. ~9!

To reiterate, model 2 is exactly model 1 except the b
particles of model 2 are in a harmonic potential well. As w
shall see, in spite of the obvious similarities between mod
1 and 2, their dynamics are distinct. Therefore, the studie
models 1 and 2 prompted us to consider model 3, descr
below.

C. Model 3

The Hamiltonian for the anharmonic oscillator that is ha
monically coupled to the bath described by the free harmo
oscillators is given by

H5p2/2m1~1/2!x21~1/4!x41(
i 51

N

pi
2/2mi

1(
i 51

N

~1/2!xi
21

K

2(
i 51

N

~x2xi1 i l !2, ~10!

Once again, model 3 is exactly model 2 except the b
particles of model 3 are now uncorrelated. In the three m
els described by Eqs.~8!–~10! m5mi51 andxi and pi are
the position and momentum of the bath particles, resp
tively, andN is the total number of oscillators in the bat
Cartoon descriptions of the interactions in all three mod
are show in Fig. 1.

FIG. 1. Cartoons describing the interactions in the three mod
The filled circle is the particle in the anharmonic well. The op
circles are the bath particles. The parabola under some bath
ticles indicate that those particles are in a harmonic well. The re
tors are harmonic springs.
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IV. NUMERICAL STUDY

It is very difficult to solve for the dynamical behavior o
the anharmonic oscillator in models 1–3 in an analytic fa
ion. The equations of motion for each of the particles
models 1–3 were therefore solved numerically using the
locity version of the Verlet algorithm@14#. The anharmonic
oscillator was assigned an initial velocity ofv50.001 and an
initial position of x50. This initial condition sets the anha
monic oscillator and the bath particles in motion. The p
ticles used to construct the baths in models 1 and 2 were
initially at rest and initially located on the number line a
cording toxi50.0001i , where the index ran fromi 51,...,N
whereN was the number of harmonic oscillators used in
study. Thusl 50.0001. TheKi ’s were varied randomly in the
interval @0.01,1.0#. We have also studied cases in whi
Ki5K. Our calculations reveal that varyingKi has no sig-
nificant effect on the frequency spectrum of the anharmo
oscillator in the interval explored above. Therefore, we ha
set all theKi ’s equal toK in all the work reported here fo
models 1 and 2. The insensitivity of the results to the val
of Ki chosen is possibly due to the fact that the velocities
the particles in the harmonic-oscillator chains are rat
small. However, as we shall see, the dynamics of the an
monic oscillator is sensitive to any one-body potential t
the bath particles are subjected to as well as the details o
two-body interactions within the bath. Thus the frequen
spectrum of the anharmonic oscillator in model 2, in whi
the bath particles in the harmonic-oscillator chain are sub
to a one-body potential, is distinct from that in model 1,
which the bath particles in the harmonic-oscillator cha
have no additional constraints. Likewise, the frequency sp
trum of the anharmonic oscillator in model 2, which h
nearest-neighbor interactions of the bath particles, is dif
ent from that obtained using model 3, which has no inter
tions between the bath particles.

In the study of model 3, the velocities of the harmon
oscillators that were used to construct the bath were dis
uted such that the initial kinetic energy of these oscillat
were Boltzmann weighted according to exp(2kEK), where
EK is the initial kinetic energy andk is some constant~we set
k51!. The range of kinetic energies allowed w
1024–25.32. Thus we had equal spacing in exp(2kEK), but
unequal~i.e., Boltzmann weighted! kinetic-energy spacing
The initial positions of the harmonic oscillators in this mod
were chosen as per models 1 and 2.

The integration step size and the time length of the st
varied depending on the set ofN andK being studied. The
largest step size used was 1022 time units, while the smalles
was 1024 time units. The length of time over which th
velocity relaxation functions of the anharmonic oscillat
were determined averaged to near 50 time units.

We have used the discrete cosine transform@15# of the
velocity relaxation function to determine the velocity pow
spectrum of the anharmonic oscillator. In order to elimin
the negative numbers that arise from incomplete phase
cellations in the calculation of the discrete cosine transfo
we have multiplied the relaxation function with a Gauss
function of the form exp(2a t2) before taking the transfor
mation. All the velocity power spectra shown in this stu
have used this Gaussian function witha50.02.
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V. DYNAMICS IN MODEL SYSTEMS

In this section we shall discuss our studies on the velo
relaxation function for the anharmonic oscillator that is h
monically coupled to the various heat baths~described by
models 1–3! under study. For model 1, i.e., the bath model
using the harmonic-oscillator chain, we have studied the
velocity power spectra that can be obtained from the follo
ing sets of (N,K)5~N51,2,9,49,99,249,499,749,999,999
K50.01,0.1,1).Recall that we have set eachKi equal toK
in models 1 and 2. We have found no evidence of a pea
the velocity power spectrum atv51. @Recall the discussion
following Eq. ~6!.# This leads us to conclude that the dynam
ics of the bath particles strongly affects the dynamics of
anharmonic oscillator to which the bath particles are coup
via K. We did, however, find peaks in the velocity pow
spectrum of the anharmonic oscillator at values ofv that
were greater than 1. These results are summarized in Fi

A subsequent analysis of the quadratic fits ofN as a func-
tion of v, the lowest frequency of the anharmonic oscillat
for the three values ofK characterizing the coupling betwee
the anharmonic oscillator and the particles in the harmon
oscillator chain studied resulted in an empirical express
for v as a function ofN andK, which is given by

v52~1/20!K120.693

1~1/20!AK2~120.693!1400NK1400K1400. ~11!

It may be that one can write Eq.~11! as

v52~1/20!K12 ln 2

1~1/20!AK2~12 ln 2!1400NK1400K1400. ~12!

However, in the absence of an analytical proof, it is wo
not speculating that a fitted parameter such as 0.693 is a
ally ln 2.

FIG. 2. Dominant frequencyv of the velocity power spectrum
for the anharmonic oscillator connected to the bath as describe
model 1. The symbols correspond to the simulations done at var
sets of (N,K), whereN is the number of bath particles andK is the
spring constant for all the springs. The parabolas have the f
N(v,K)52121/K1(1/10)K20.693v1(1/K)w2.
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228 57DONALD P. VISCO, JR. AND SURAJIT SEN
For largeN, this becomes

v}ANK. ~13!

Let us recall that the anharmonic oscillator couples with e
harmonic oscillator via springs of spring constantK and that
N is the total number of harmonic oscillators that intera
with the anharmonic oscillator. It then becomes apparent
one can regard the collective effect of the oscillators on
dynamics of the anharmonic oscillator as that of a single
that oscillates with a harmonic coupling ofNK. This ‘‘effec-
tive megaoscillator’’ adds a ‘‘harmonic frequency’’ to th
velocity power spectrum of the anharmonic oscillator.

The role of the harmonic interactions between the p
ticles that make up the bath is not evident from the analy
of model 1. As we shall see below, the harmonic coupl
between the particles tends to suppress the dynamical ef
of the anharmonic oscillator.

When we model the bath according to model 2@see Eq.
~9!#, we find that for the state whereN51, K51, we observe
two frequencies: the first atv51 and the second at a fre
quency that is consistent with thev value suggested by Eq
~11!. The velocity power spectra of the anharmonic oscilla
in this bath~i.e., in model 2! as well as that in model 1 with
N51 andK51 are shown in Fig. 3. It would seem that th
bath described by model 2 does lead to the correct canon
ensemble frequency. While this is encouraging, we also n
that the bath in model 2 leads to other peaks~as shown in
Figs. 3 and 4!. The peak atv51 turns out to become in
creasingly less dominant asN is increased in model 2. Thus
for N5999, K51, we find that the peak atv51 is domi-
nated by a high-frequency peak at a location that is con
tent with expectations based upon the proportionality giv
in Eq. ~13!. This is shown in Fig. 4. The inset of Fig. 4 show
that there is still a peak atv51, but it possesses an amp
tude that is;1/N if we assume that the peak atv531.6 is of
amplitude unity. The results in Figs. 3 and 4 confirm the r

FIG. 3. Velocity power spectrum for the anharmonic oscilla
connected to the bath as described by model 1~solid line! and
model 2~dashed line! for N51, K51. The vertical line atv51 is
to indicate the canonical ensemble frequency.
h
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of the size of the bath in this problem, namely, that for lar
N, the high-frequency contributions are dictated byN itself.
When the bath particles are coupled with one another,
natural frequency of the anharmonic oscillator is dwarfed
the frequencies associated with the size of the bath and
interactions between the bath particles.

If we remove the coupling between the harmonic oscil
tors in the chain~i.e., make the bath particles uncorrelat
and consider a set of free harmonic oscillators as in mode!
and recalculate the velocity power spectrum of the anh

FIG. 5. Velocity power spectrum for the anharmonic oscilla
connected to the bath as described by model 3 forN5999, K51.
The vertical line atv51 is to indicate the canonical ensemb
frequency.

r
FIG. 4. Velocity power spectrum for the anharmonic oscilla

connected to the bath as described by model 2 forN5999, K51.
The inset shows the existence of a peak nearv51 that cannot be
seen when plotted with the dominant frequency. The vertical line
v51 is to indicate the canonical ensemble frequency.
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57 229DYNAMICS OF AN ANHARMONIC OSCILLATOR THAT . . .
monic oscillator, we readily recover the canonical ensem
peak atv51 for theN5999, K51 system as shown in Fig
5. Thus model 3 is clearly a better description of a heat b
than models 2 and 1. However, even this model is not p
fect. The peak in the velocity power spectrum atv531.6 in
Fig. 5 still persists and has an amplitude almost equal to
of the peak atv51. It appears that the lone important pe
from model 2 at this state has split into two equally impo
tant peaks when the bath particles are uncoupled~model 3!.

As argued above, the peak atv531.6 from model 3 at
N5999, K51 is related to the size of the bath. In the the
modynamic limit, this peak will move to infinitely high fre
quencies and hence will not affect the dynamics of the s
tem being probed. The amplitude of the peak at unity is
longer suppressed by the high-frequency peak in mode
This is attributed to the fact that the bath particles are
coupled with each other and thus the collective frequen
associated with the dynamics of the bath particles can
longer affect the dynamics of the system itself.

To summarize this section, we have shown that among
models we have probed in this study, model 3 is the m
appropriate one for describing a heat bath. For any finite b
s
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constructed out of harmonic oscillators, there are hig
frequency ‘‘contaminants’’ to the dynamics of the system
interest. However, in addition to the above-mentioned c
taminant frequencies, if the bath particles are uncoup
from one another, the dynamics of the system of interes
unaffected by the details of the bath. The contaminant
quencies can be readily characterized in a numerical stu
For a sufficiently large bath, these high-frequency corr
tions can be made to lie beyond the highest frequencies
lowed by the shortest time scales supported by the sys
Thus a model similar to model 3 can be a useful approac
model a heat bath in simulational studies on the dynamic
physical systems in a canonical ensemble@16#.
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